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The PISO algorithm, which is presented in a companion paper, is a non-iterative method 
for solving the implicity discretised, time-dcpendcnt, fluid flow equations. The algorithm is 
here applied in conjunclion with a linile-volume technique employing a backward temporal 
difference scheme to the computation of compressible and incompressible flow cases. The 
results of calculations are compared with similar ones obtained with an existing iterative 
method. It is shown that for time-evolving flows the splitting error of PISO is negligibly small 
at the level of time-step required to eliminate the temporal truncation error, while the 
avoidance of iteration results in a substantial reduction in computing effort over that required 
by iterative methods. It is also demonstrated that PISO is stable for fairly large time steps, 
which renders it useful for steady-state calculations as well. Cl 1986 Acadamc Peas, Inc 

INTRODUCTION 

In a companion paper [l], a method (PISO) is presented for the solution of the 
implicitly discretised fluid flow equations by splitting of operations. The method 
dispenses with outer’ iteration and is equally applicable to both compressible and 
incompressible flows. In the aforementioned paper, the splitting technique is presen- 
ted and is rhen assessed for accuracy and stability in relation to a linearised form of 

’ The term “outer iteration” is used to distinguish the iteration process on the coupled sets of 
equations for different variables from the iteration process which may be used to solve the simultaneous 
nodal tinite-difference equations for a single variable. 
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the equations. It was found that for such a system, the temporal error introduced 
by the splitting scheme (herein called splitting error) is of higher order in 6r than 
the errors embodied in most of the temporal difference schemes currently used in 
time-discretising the original differential equations (herein called temporal dis- 
cretisation error). This not only would enable the control of the splitting error by 
the time-step size 6t (rather than by recourse to iteration), but should also lead, a-t 
least in the case of low-order temporal difference schemes, to the attainment of 
time-accurate solutions at 6t values comparable to those dictated by the accuracy of 
the difference scheme. Also, depending on the spatial difference scheme used, the 
method can be shown to retain some of the stability endowed by implicit differen- 
cing. 

In principle, therefore, PISO should be efficient for time-dependent calculations 
as iteration is disposed of without paying the penalty of having to reduce Or in 
order to reduce splitting errors. At the same time, because of the ability to cope 
with large 6t, the method should also be useful for applications to steady-stare 
problems. Whether these merits are preserved when it is applied to the full non- 
linear equations which govern fluid flow is the subject of the present paper. 

First, it is useful to state the objectives which need to be fulfilled in order to 
validate the procedure; these are as follows. 

(i) To demonstrate that the method is capable of handling both com- 
pressible and incompressible flows. 

(iii To show, at least for one particular combination of spatial and temporal 
discretisation schemes and a given spatial mesh size, that the temporal errors 
introduced by the splitting procedure vanish with 6t and do so at least as fast as the 
discretisation errors due to the temporal differencing scheme (first-order-accurate in 
the present case). The implication here is that PISO should not hinder the 
achievement of a time-accurate solution at the 6r values dictated by the accuracy of 
the difference scheme. 

(iii) To verify the saving in computing effort achieved by dispensing with 
iteration when computing time-accurate solutions. 

(iv) To demonstrate the ability to handle large time-steps which renders the 
method also useful for steady-state calculations. 

To accomplish these objectives, comparisons are made against computations with 
an existing iterative method employing the same spatial and temporal difference 
practices. This method yields the exact solution (to within the iteration tolerance 
imposed) to the discretised equations over one time-step, i.e., the errors in the 
calculated fields are solely due to the spatial and temporal discretisation practices 
employed. By refinement of bt, the value at which the particular temporal difference 
scheme achieves a time-accurate solution can thus be determined. Since PISO is 
intended as an alternative to iteration, a comparison between the computing efforts 
required by the two will serve as a measure of relative performance. 

Other non-iterative, time-marching schemes exist which are either semi-implicit, 
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such as those in [2, 31, or fully implicit and based on time-splitting (e.g., ADI) of 
the spatial fluxes, such as those of [7-91. The first group of methods is subject to 
well-known restrictions on 6t imposed by stability considerations and is hence at a 
disadvantage. The second group has to be based on the compressible form of the 
continuity equation, which restricts their application to that particular class of 
flows. Furthermore, the latter methods in general require the solution of block 
simultaneous sets of equations, which can be a far more complex affair than the 
solution of scalar ones as is the case with PISO. 

The best established methods using pressure and velocity as working variables 
are those found in [5, 61, namely, the SIMPL,E and SIMPLER schemes, both of 
which are iterative. Both were developed originally for steady-state incompressible 
flow although extensions to time-dependent, compressible flow have been made, for 
example, in [4]. Of the two, SIMPLER is reported to be the most efficient and 
robust. Other variants on these schemes exist, in particular the PUP method in 
[12], which shares some features with the incompressible version of PISO (see [l] 
for a discussion of the similarities and differences). A more recent method which 
also uses the same working variables, but employs block iteration, is reported in 
[lo] to be efficient and robust for steady-state incompressible flow. 

In what follows, the incorporation of the PISO methodology into a finite-volume 
procedure is presented. The scheme employs a staggered grid for the storage of 
velocity and pressure, and uses backwards differencing for the representation of the 
temporal variations (i.e., the Euler implicit scheme). The method is applied to both 
compressible and incompressible flows to demonstrate its versatility. A comparison 
is made against computations performed with fully iterative methods based on the 
SIMPLE algorithm [h-6] and employing an identical difference scheme in order to 
assess the relative efficiency and stability of PISO in. transient flows. A study is also 
made of the performance of PISO for a steady-state incompressible flow 
calculation. 

The incompressible case considered is that of a laminar flow (Re = 100) through 
a suddenly expanding circular pipe with an open outlet. The compressible case is 
that of laminar flow in a similar pipe but with a closed end, where a peak Re of 
1000 and a peak Mach number of 0.2 are attained. 

THE GOVERNING EQUATIONS AND THEIR DISCRETISATION 

The Transport Equations 

The governing equations are essentially the same as those given in [I], and are 
restated here in Cartesian tensor notation. The equations for continuity, momen- 
tum, and total energy in laminar compressible flow are 

(1) 
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where p is the laminar viscosity and Pr is the Prandtl number. The total energy e is 
related to the temperature by 

e = c,. T+ fz4$4, (4) 

where C,. is the constant volume specific heat. The equation of state taken here is 
that of a perfect gas 

where R is the gas constant. 

P= RpT (jj 

Evidently for constant density flow, the time derivative term in Eq. (I ) vanishes 
and Eqs. (3) and (5) become redundant. 

For the present applications, the above equations are transformed into cyhn- 
drical polar coordinates (x, I’) and corresponding velocity components (u, L!) with 
axia1 symmetry assumed. The transport equations thus take the form 

where 4 now stands for any of the dependent variables U: t’, and r, r is the “dif- 
fusion” coefficient of property 4, and S, contains ail the remaining terms present in 
the parent equations, as well as terms arising from the coordinate transformation. 
The continuity equation becomes 

FIG. 1. The computational grid. 
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FIG. 2. Control volumes for scalars and velocities. 

Discretisntion 

A staggered grid arrangement in which velocity nodes are located in between 
pressure ones, as depicted in Figs. 1 and 2, is used. The discretisation of the trans- 
port equations is effected by a finite-volume technique for which purpose control 
volumes (indicated in Figs. 1 and 2) surrounding each variable location are defined. 
The formulation of the difference equations follows standard practices employed in 
earlier work [4-61, hence only a brief description of it is provided below. The 
spatial variations are approximated by hybrid upwind/central difference formulae 
giving first- to second-order spatial accuracy. It should be stressed, however, that 
the applicability of PISO is in no way restricted to this choice, as its application in 
[14] to a nine-point skew upwind scheme verifies. The temporal difference scheme 
used is the Euler implicit formula which, although of only first-order accuracy, is 
chosen mainly because of the simplicity of its implementation. Here again, the 
validity of PISO is in principle not restricted to this choice, as inspection of the 
methodology in Cl] will reveal. 

The derivation of the difference equations is now illustrated by considering 
Eq. (6) as an example. Integration of this equation over a control volume such as 
those shown in Fig. 2 gives 

where the subscripts refer to the locations indicated in Fig. 2, and superscripts n 
and y1+ 1 denote successive time levels. As implied by the Euler implicit temporal 
difference scheme used, all the spatial fluxes (which appear non-superscripted) in 
Eq. (8) are evaluated at time n + 1. These spatial fluxes are now approximated by 
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the hybrid upwind/centred difference scheme mentioned earlier. Taking the flux F:,. 
at the n:-face of the control volume as an example: it can be represented as 

where M,, is the mass flux through the cell face w and is defined as 

lM,, = (pm),,. (10) 

and a is the cell-face area. The quantity CI is a weighting factor which depends on 
the cell Peclet number Pe as 

1 ’ 2 
Lx,=- l+- 

2 ( ) Pe 
for lPej d 2 

=1 

=o 

for Pe>2 

for Pe < --2 

and Pe is given by 

p116.X 
Pe= - 

( i r I,.. 

ill) 

Expression (9) is now rewritten as 

where the coefficient A, defined by 

has been introduced. 
Similar relations to (13) above can be formulated for the fluxes through the ?I and 

s faces (where u should replace u in expressions (10) and (12)) as weli as the co face 
of the cell. Substitution of these expressions into the integral equation (8) yieids the 
difference equation 

(B--A,) (is;+‘= H’(qs”fl)+S~+B”qg. 

In Eq. ( 15), the quantity B is defined by 
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and !?, is the volume integral of the source term S,. The operator H’ relates to the 
4 values prevailing at the surrounding nodes and is given by 

H’(~)=A,~,+A,,~~,+A,~,+A,~, 

while the central coefficient A, is defined by 

(17) 

A,= -(A,+A,,+A,+A,+div121) (18) 

where div M = M, - M,,, + M, - M,. 
Equation (15), it should be observed, corresponds to the momentum and energy 

equations (7) and (9) in Ref. [I] when 4 stands for U, II, ore. The continuity 
equation is similarly discretised by integrating Eq. (7) over a control volume 
surrounding a pressure node, to get 

PW” - p”) + (pm), - (P~U).. + (Pfm), - (pm), = 0 (19) 

where p is given by 

and the mass fluxes are evaluated at the n + 1 time level. The pressure equation can 
now be derived from a combination of the discretised continuity relation (19) and 
the momentum equations which are given by Eq. (15) when d stands for u and a; 
this procedure is outlined below. 

The velocities u,, u,, etc., in Eq. (19) are to be replaced by expressions obtained 
from the momentum equations. Taking the velocity U, as an example, Eq. (15) for 
this quantity can be cast into the form 

u, = [HL - (PO - PE) a, + C,]/(B - A,) (21) 

where the pressure gradient term is now written out explicitly, and the quantity C 
contains all other terms in the parent equation. The mass flux at the e-face of the 
cell can now be evaluated from Eq. (21) as 

(pus), = A, - D,(Po - PE) + c, (22 1 

where the following have been introduced: 

(23) 

(24) 

(25) 
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Similar expressions for the mass fluxes at faces W, n, and s of the cell can be derived, 
ail of which may be substituted into Eq. (19) to yield 

D,P, = J(P) - div &- div c - fl(p’+’ -p”) i26) 

where the operator J is defined by 

J=D,P.+ D,,.P,-+ D,P,f DJ, i27) 

and 

D,,=D,fD,,+D,,+D,. (28) 

Equation (26) corresponds to the pressure equation (12) in [I], and its form is 
similar to the general 4 equation (15). 

METHOD OF SOLUTION 

The system of Eqs. (15) for u. c’, and e (the latter of which becomes redundant in 
the case of incompressible flow) together with Eq. (26) for the pressure are solved 
by the PISO algorithm, a full description of which appears in [l]. The non- 
linearity in Eq. (15) arising from the dependency of the coefficients .4 and B on the 
field variables themselves is handled by evaluating these coefficients from the old 
time level values. Although this practice is only first-order accurate in time it is of 
the same order of accuracy as the temporal difference scheme, and is therefore con- 
sistent with it. Furthermore, for the same reason, all the computations for the com- 
pressible flow case presented herein were made with the two-stage version of the 
PISO algorithm presented in [l]. Indeed, computations with the three-stage 
variant that were performed did not bring any improvement in accuracy while 
requiring substantially higher computing effort. 

The set of nodal simultaneous algebraic equations for each variable are solved by 
a line successive over-relaxation procedure to a specified convergence level. Recent 
work [15] shows that considerable saving can be made if Stone’s strongly impkit 
procedure [I131 is used instead, especially for the pressure equation. Further saving 
can be made in the case of steady-state calculations, when temporal accuracy is of 
no consequence, by relaxing the convergence tolerance on these sets of equations. 
However, the pressure equations must still be converged to at least 10% of the 
initial residuals, otherwise the method is forced to take more time-steps to arrive to 
the final solution, to the detriment of effkiency. 

For the purpose of evaluating the performance of PISO, a comparison is made 
against calculations carried out with an iterative method. The method chosen is 
that based on the well-established SIMPLE algorithm in [S, 61: which is com- 
prehensively documented in the literature, The method was initially developed for 
steady-state problems, but has been extended to compressible transient fiows (as 
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in [S]). For the steady-state case, the temporal derivative terms in the transport 
equations are suppressed and iteration replaces time-marching with under- 
relaxation used to procure stability and convergence. This under-relaxation is 
related to the time step St of an equivalent transient calculation as shown in [12] 
and in the Appendix. For unsteady-state problems, iteration is employed at each 
time step to satisfy all the equations simultaneously. Under-relaxation must be used 
here also in order to ensure the convergence of the iteration process. As is the case 
with the PISO computations, a line successive over-relaxation scheme was 
employed for each set of algebraic simultaneous equations. 

RESULTS 

Incompressible Flow 

The incompressible flow case chosen is that of an axisymmetric laminar flow in a 
duct with a sudden enlargement at entry (Fig. 3). The ratio of the diameter at inlet 
to that of the duct is I:2 and the length of the duct is 4 times its diameter. The 
time-varying velocity profile at inlet is assumed to be spatially uniform across inlet 
and the flow is started from rest with an inlet velocity rising linearly from zero at 
t = 0 to its final steady value of I/ at t = L/V: where L is the length of the duct. The 
Reynolds number (based on the peak velocity V and the duct diameter) is 100. At 
the outlet, zero velocity gradients are assumed, while at the walls? the usual no-slip 
conditions are imposed. The mesh size is 20 x 20 (uniform in both directions) 
throughout and is kept unaltered. The tests carried out are designed to serve three 
purposes. The first is to demonstrate that the accuracy of the PISO method is at 
least as good as the accuracy of the temporal difference scheme used. The second is 
to illustrate the stability of the scheme for large at, which makes it equally suited to 
the calculation of steady-state problems. And third, to show that the first objective 
is achieved at substantially lower computing effort than with existing methods 
utilising sequential iteration, as the one compared here. 

(i) Open end.tncompresslble cow 

Iii1 Closed end- compressible case 

FIG. 3. Geometry of duct with sudden enlargement. 
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FIG. 4. Predicted velocity transience on centreline ~iccompressible case ). 

Calculations were first performed with the time-marching version of SIMPLE 
using various values of the time-step size 6t to find the maximum allowable value 
(say, 6t,) for which the temporal truncation error is acceptably small. Under- 
relaxation was necessary to stabilise the computations, values of 0.5 being used for 
the velocities in the momentum equations (but not for the pressure). A similar exer- 
cise was then performed with PISO using step sizes that are multiples of 6t,. 
Figures 4 and 5 show the predicted transient behaviour of the axial velocity (nor- 
malised by the absolute steady-state value) at two locations: the first (Fig. 4) is on 
the centre line halfway between inlet and outlet and the second (Fig. 5) is Located at 
the point where the maximum reverse axial velocity occurs (i.e., in the recirculation 
zone). The different curves in each case are those obtained with PISO for differem 
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FIG. 5. Predicted velocity in recirculation zone iincompressible case). 
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values of &I&,, as well as that for the time-accurate solution obtained with the 
iterative method. The latter curve is indistinguishable from that pertaining to 
6t/6to = 1, verifying that the PISO solution is at least as accurate as the temporal 
difference scheme used, and that this algorithm allows the use of the maximum 
valued of bt permitted by the accuracy of that difference scheme. 

The benefits of avoidance of iteration were verified by the finding that the ratio of 
the computing time required by the two methods (with 6t/6to = 1) was 9.3 in favour 
of PISO. 

Figure 4 also shows that PISO remains stable for btjbt, as large as 20. This is 
very useful when only the steady-state solution is sought (in which case temporal 
accuracy is of no consequence). Taking large time-steps permits rapid arrival at the 
steady state with minimum computing effort, as exemplified in Fig. 6. This figure 
shows the computing times (on a CDC 6400 machine) required respectively by 
PISO and the steady-state version of SIMPLE (in which time derivatives are omit- 
ted) to reach that state. In the iterative calculations the under-relaxation factor i 
(imposed on the velocities only) was varied to determine the optimum value, i.e., 
that yielding the minimum computing time. A similar exercise was then performed 
with PISO, using now dt as the controlling parameter; thus the abscissa in Fig. 6 is 
either 2 or 6t (made dimensionless by dividing by the convection time scale 6x/V) 
according to the method. 

Two facts emerge from an examination of this plot. The first is that PISO arrives 
at the solution at a much lower level of computing effort than the other method, 
whatever the value of ,? or ht. The second is that the PISO curve is remarkably flat 
over a wide range of values, thus indicating stability and robustness. In contrast, 

00 0.5 1 1.0 

CPU 

I seconds1 

100 

FIG. 6. Computing time for the calculation of steady-state incompressible flow. 
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the performance of SIMPLE is fairly sensitive to the relaxation parameter and the 
scheme diverges beyond a value of 0.55 (which is equivalent to GrV/Ex of 1.2 for a 
time-marching method). 

It should. however, be pointed out that the SIMPLE scheme used for these com- 
parisons is not the most efficient of the existing iterative methods. For example, 
several versions of the same scheme have been proposed and tested in [12], some 
of which show marked improvement in efftciency over the original one. Other 
techniques, notably SIMPLER and PUP in [6] and [12], respectively. are also 
reported to be much faster as well as more stable. 

A qualitative assessment of the results gleaned from [12] shows that rhc 
improvement in speed over SIMPLE by the best of these methods for steady-state 
calculations is about the same as that achieved by PISO for steady-state problems 
(including ones not presented here). This is not surprising as the latter shares some 
common features with the others as explained in [ 1 ]. However, the improvement in 
speed attained by these other methods over SIMPLE still does not match the 
margin of saving achieved by PESO in time-evolving flows, thanks to its non- 
iterative strategy. 

ln this flow case, the geometry of the duct is similar to that of the previous case. 
with the exception that the downstream end is now closed, so that the fluid mass 
inside the duct varies with time. The velocity profile at inlet, which is again assumed 
to be uniform in the radial direction, is taken to vary sinusoidally with time with a 
peak velocity V corresponding to a Reynolds number of 1000 and a Mach number 
of 0.2. The period of the cycle is taken as twice the time taken for a fluid particle 
traveling at the peak velocity to traverse the length of the duct; the computations 
are carried out over a full cycle of velocity variations starting from rest. The density 
and temperature at inlet are assumed to be uniform and constant with time and the 
duct wall temperatures are taken to be constant at the same value as that at inlet. .4 
uniform mesh of 20 x 20 is used throughout. 

As in the incompressible case, calculations were first performed with the time- 
marching, compressible version of SIMPLE using various values of c‘it to find the 
value Sr, for which temporal truncation errors are negligible. Here again under- 
relaxation was necessary to ensure convergence and values of A = 0.5 were used for 
the velocities and temperature (but not pressure). The exercise was then repeated 
with PISO using step sizes that are multiples of at,. The results of those com- 
putations are displayed in Figs. 7 to 10, which show the predicted transience of the 
axial velocity (normalised by the peak inlet value) and of the pressure (normalised 
by the pressure at inlet) at two locations in the duct. The first point (Figs. 7 and 8) 
is located at one-third of the duct length downstream of inlet and at 80% of the 
duct radius, this being the location where some of the highest reverse velocities 
occur. The second point (Figs. 9 and 10) is located on the centreline halfway down 
the length of the duct. In all these figures, the time coordinate appears normaiised 
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- l[also iterative lbt =6t,Jl 

FIG. 7. Predicted velocity transience in recirculation zone (compressible case j. 

by the period of the cyclic inlet-velocity variations. These figures indicate that the 
solutions given by PISO for different values of the time-step size (st/st,) converge 
to an acceptable level of temporal accuracy at the same value of 6t as that required 
by the iterative method, i.e., dt,. This verifies that the accuracy of PISO for com- 
pressible flow is as good as the accuracy of the temporal difference scheme 
employed. The most significant finding emerging from these calculations was. 
however, that the PISO computations required only 0.19 of the computing effort 
demanded by the iterative scheme. 

OL 06 08 IO 
Normahsed Time 

FIG. 8. Predicted pressure transience in recirculation zone icompressible case). 
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- l[aalso iterotlveib! :St,)] ' 

Normollsed Time 

FIG. 9. Predicted velocity transience on centreline (compressible case 1. 

The figures also demonstrate that time-step sizes of up to 20 St, can be taken 
with PISO without any signs of instability, whereas solutions could not be obtained 
with the iterative method for values greater than 3 tit,: as the iteration process then 
failed to converge with the chosen set of values of the under-relaxation parameter A. 
Here again, the stability of PISO for large 6t renders it useful for the computation 
of steady-state compressible flows. 

CONCLUSIONS 

The PISO algorithm described in [I] has been implemented in a finite-volume 
method which employs Euler’s implicit temporal difference scheme and a hybrid 
upwindjcentred spatial difference scheme, The resulting procedure was applied to 
the computation of two cases of axisymmetric laminar flow in circular ducts with 
abrupt enlargement. The first case was for incompressible fluid with an open duct- 
end and the second was for a compressible flow with a closed duct-end. 

The results of the computations verify the findings of the analysis in [i ] 

551’6? l-6 FIG. 10. Predicted pressure transience on centreline jcompressible case j. 
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regarding the accuracy and stability of the algorithm. This is achieved through a 
comparison against calculations performed with an existing iterative method. The 
most important fact emerging from these comparisons is that PISO is many times 
faster than its iterative counterpart for transient flows, whether compressible or 
incompressible. Furthermore, it exhibits stable behaviour for large time-step sizes 
which makes it a reliable technique for steady-state calculations. 

Recent work Cl.51 where the PJSO method was applied to turbulent flows (for 
which the--k-s model of turbulence was used) shows that the same significant 
saving over iterative schemes can be achieved for such flows also. This is the case 
provided that the splitting procedure for the source terms in the k and F equations 
outlined in [l] is implemented in conjunction with PISO. 

APPENDIX: THE RELATION BETWEEN TIME-MARCHING AND 
UNDER-RELAXED STEADY-STATE PROCEDURES 

Consider a model implicitly discretised scalar equation (such as Eq. (15) in the 
text) for time-dependent flow in the absence of sources and for a constant density 
fluid. It can be written as 

(B--A,)$h”,+‘=H’((LY+‘)+Bqg. (A.1) 

The corresponding equation in steady-state form in which the time derivative terms 
are suppressed would be obtained if the term B in Eq. (A.1) is set to zero and the 
superscripts now stand as iteration counters. An iterative procedure based on this 
form of the equation invariably requires under-relaxation in order to stabilise the 
computations. A standard practice adopted in introducing under-relaxation is to 
base the new iteration level value (i.e., at rz + 1) on 

4 g+‘=nq5,+(1-l)qg lA.2) 

where d is the relaxation factor and the superscript denotes the value that would be 
obtained if no relaxation was used. Thus the equation actually solved in an 
iterative, under-relaxed procedure becomes 

:4 1-I -- ;;+‘=H’(&“+‘)-~i1& (A.3) 

Equation (A.3) is obtained from the substitution of relation (A.2) into the form of 
E,q. (A.1) in which the term B is set to zero. It is not difficult to discern the 
similarities between the time derivative terms in Eq. (A.l) and the damping terms 
due to under-relaxation in Eq. (A.3). Equating these terms gives 
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Now, B is defined in Eq. (16) in the text as 

pr6r6.v 
B=6r. (A.5 j 

Consider, for the moment, the case of convection-dominated flow (which is often 
the case); the coefficient ‘4, is given approximately by 

- .4, = purEr + pw6.u. +..6) 

Substitution of Eqs. (A.5) and (A.6) in Eq. (A.4) gives 

($+$)=A. (A.7) 

It is evident from (A.7) that the relaxation parameter h is related to the local 
Courant numbers, uSt/Gx, dt/6r, of the equivalent time-dependent procedure (a 
similar result was also obtained in [ 121). For example, if o is zero, the case of E. = 0 
corresponds to 6t = 0. while the case of A = 1 corresp0nd.s to the case of 6; = (=:‘. The 
case of A = 0.5 corresponds to a local Courant number ufit,iS.u of 1. 

Similar findings can be reached for diffusion-dominated flows, where now the 
relaxation factor i becomes related to the parameters 12t/(pkx2) and F6rjipbr’). In 
all cases, therefore, there is a definite relationship between the value of the time-step 
size in a time-marching procedure and the under-relaxation factor employed rn 
steady-state algorithms, a relationship which relates local flow properties with the 
mesh size and 6r. 
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